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Abstract. In this work we explore the geodesic deviations of spinning test particles in a string inspired
Einstein–Kalb–Ramond background. Such a background is known to be equivalent to a spacetime geometry
with torsion. We have shown here that the antisymmetric Kalb–Ramond field has a significant effect on
the geodesic deviation of a spinning test particle. A search for observational evidence of such an effect in
astrophysical experiments may lead to a better understanding of the geometry of the background spacetime.

1 Introduction

String theory, since its emergence, is considered to be the
most promising candidate for a consistent perturbative
quantum theory of gravity. The search for the signature
of string theory in the low energy world has intensified
over the last few years to establish contact of this theory
with the real world. The possible testing grounds are ac-
celerator experiments and cosmological/astrophysical ob-
servations. The present work aims to search for such a
stringy signal in an astrophysical observation through the
study of geodesic deviations of spinning test particles. It is
well known that the low energy limit of the gravity sector
of string theory indeed reproduces the curved spacetime
picture as proposed in Einstein’s theory. However, the
presence of the massless second rank antisymmetric ten-
sor field (Kalb–Ramond field) [1] endows the background
spacetime with torsion. Thus a string inspired background
differs from Einstein’s framework by a Cartan extension.

In Einstein’s framework the dynamics of particles in
curved spacetime has been an important subject of investi-
gation. Since the early stages of the development of general
relativity, the study of the motion of a test particle (i.e.,
a particle which is sufficiently small compared to other
objects producing the field and which has a negligible in-
fluence on the field) in a curved background is of great
importance. Studies of the dynamics of streams of cosmic
particles in astrophysical/cosmological experiments reveal
the important properties of the background spacetime. As
is well known a test particle of the simplest type, i.e., one
without any internal structure, has been shown to follow
the so-called geodesics. Such test particles with single pole
structures are referred to as “pole particles”. However, a
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test particle can have a structure of its own, thereby giv-
ing rise to a non-vanishing spin-density for the particle.
As such, its equation of motion can then depend on this
structure. A test particle with such a multipole structure is
expected to follow a trajectory that is different from that
of the usual geodesic. A theory describing the motion of
such “pole–multipole particles” has been developed ini-
tially by Papapetrou [2] and later on by Dixon [3] in an
alternative approach. Subsequent applications of the Pa-
papetrou formalism to the particular case of the motion
in a static spherically symmetric Schwarzschild field has
been carried out by Corinaldesi and Papapetrou [4] and
since then there has been a growing interest in the study
of the motion of spinning test particles under the influ-
ence of gravity. Most recently, there have been a plethora
of works in the literature [5] that investigate the dynamics
of spinning test particles in different sorts of background
spacetimes.

In this work, we study the motion of spinning particles
in a general static spherisymmetric spacetime in presence
of the Kalb–Ramond (KR) field. It has been shown [6]
in the context of string theory that the KR field, in gen-
eral, has a gauge invariant coupling with the electromag-
netic field and produces significant effects on many cosmo-
logical/astrophysical phenomena [7–10]. Extensive works
have also been carried out [11,12] to explore the role of
such an antisymmetric tensor background in the context
of compact extra dimensional theories of Arkani-Hamed–
Dimopoulous–Dvali (ADD) [13] and Randall–Sundrum
(RS) [14] types. The observational possibilities of a stringy
signal has also been discussed in several other works [15,
16]. Here we explore another possible experimental signa-
ture of such a string inspired background through the in-
fluence of KR field on the geodesics of spinning test parti-
cles. We show that such geodesics indeed differ from those
observed in a pure Einstein background. An estimate of
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this departure is made in terms of the KR field and spin
of the test particle.

2 General equation of motion
of spinning test particle

According to the formalism of Papapetrou [2], the trajec-
tory of a spinning test particle in an arbitrary spacetime
structure is shown to deviate from the usual geodesic and
is described by

D

Dτ

(
m uα + uβ

DSαβ

Dτ

)
+

1
2

Rα
µνλ uν Sλµ = 0, (1)

where τ is the proper time, m and uα are respectively
the particle’s mass and four-velocity, Sαβ is the antisym-
metric spin tensor of the particle, Rα

µνλ is the curvature
tensor corresponding to the background field distribution
on which the particle moves, and D/Dτ denotes the co-
variant derivative along uα:

DSαβ

Dτ
=

dSαβ

dτ
+

(
Γα

µν Sµβ + Γ β
µν Sαµ

)
uν , (2)

Γα
µν being the usual Christoffel connections.

The spin of the particle evolves as

DSαβ

Dτ
+ uαuρ

DSβρ

Dτ
− uβuρ

DSαρ

Dτ
= 0. (3)

For vanishing spin one can easily verify that the above tra-
jectory equation (1) reduces to the usual geodesic equa-
tion.

The above equations are, however, not sufficient to de-
termine all the unknowns. It may be noted that the num-
ber of independent equations determining the spin com-
ponents is three, while the number of independent spin
components is six. Therefore, to reduce the number of in-
dependent spin components one has to impose a suitable
supplementary condition that specifies the line L that rep-
resents the motion of a “pole–dipole” particle inside the
world tube of the particle [2]. The simplest supplementary
condition suggested by Corinaldesi and Papapetrou [4] on
investigating the motion of a spinning test particle in a
static spherisymmetric spacetime has been

S0i = 0 ; i = 1, 2, 3. (4)

This condition, although not covariant, provides a very
physical definition of the representing world line L of the
spinning test particle. One can, in fact, show that if the
coordinates of L are designated by Xα (which are func-
tions of the proper time τ along L), then in the rest frame
of the central attracting body each point X ∈ L coincides
with the center of mass of the particle. Other kinds of sup-
plementary conditions can also be found in the literature
[17]; however, we presently resort to the above condition
owing to the physical relevance mentioned above.

Considering a general static spherically symmetric
spacetime metric structure, viz.,

dτ2 = −eν(r)dt2 + eλ(r)dr2 + r2 (
dϑ2 + sin2 ϑdϕ2) , (5)

one can obtain, on using the above supplementary equa-
tion (4), the explicit form of the spin evolution equations
(3):

Ṡ12 +
(

λ′

2
+

1
r

− ν′

2

)
ṙ S12 + re−λ sin2 ϑ ϕ̇ S23

+ cos ϑ sin ϑ ϕ̇ S31 = 0, (6a)

Ṡ23 +
(

ν′

2
− 1

2

)
ϕ̇ S12 +

(
2ṙ

r
+ cot ϑ ϑ̇

)
S23

+
(

ν′

2
− 1

r

)
ϑ̇ S31 = 0, (6b)

Ṡ31 − cot ϑ ϕ̇ S12 + re−λ ϑ̇ S23

+
[(

1
r

+
λ′

2
− ν′

2

)
ṙ + cot ϑ ϑ̇

]
S31 = 0, (6c)

where the overhead dot indicates differentiation with re-
spect to τ and a prime denotes differentiation with respect
to r. The equations of motion (1) for the test particle now
take the form

d
dτ

[
(m + ms) ṫ

]
+ (m + ms) Γ 0 = 0, (7a)

d
dτ

[(m + ms) ṙ] + (m + ms) Γ 1 (7b)

+re−λ

(
λ′

2
+

ν′

2

) (
S12 ϑ̇ − S31 sin2 ϑ ϕ̇

)
= 0,

d
dτ

[
(m + ms) ϑ̇

]
+ (m + ms) Γ 2

+r

(
λ′ν′

4
− ν′2

4
− ν′′

2
− λ′

2r

)
S12

+re−λ sin2 ϑ ϕ̇

(
ν′

2
+

eλ

r
− 1

r

)
S23 = 0, (7c)

d
dτ

[(m + ms) ϕ̇] + (m + ms) Γ 3

−re−λ ϑ̇

(
ν′

2
+

eλ

r
− 1

r

)
S23

−ṙ

(
λ′ν′

4
− ν′2

4
− ν′′

2
− λ′

2r

)
S31 = 0, (7d)

where Γµ ≡ Γµ
νλ uν uλ with components

Γ 0 = ν′ ṙ ṫ,

Γ 1 =
λ′

2
ṙ2 − re−λ ϑ̇2 − re−λ sin2 ϑ ϕ̇2 + e(ν−λ) ν′ ṫ2,

Γ 2 =
2
r

ṙ ϑ̇ − sin ϑ cos ϑ ϕ̇2

Γ 3 =
2
r

ṙ ϕ̇ + 2 cot ϑ ϑ̇ ϕ̇. (8)

Here m is the particle’s mass and the quantity ms is de-
fined by

ms =
r2

2
ν′

(
sin2 ϑ ϕ̇ S31 − ϑ̇ S12

)
. (9)

ms can be viewed as an effective mass originating from
the spin–orbit coupling and (m+ms) is the total effective
mass.
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In what follows, we shall be investigating whether the
above two sets of equations (6) and (7) admit any solu-
tion representing a motion on a plane passing through the
central body, of course, with the view that both the mass
and the spin of the test particle have exceedingly small ef-
fects on the background spacetime. As usual, one can take
this plane without any loss of generality as the equatorial
plane ϑ = π/2 making the simple choice

S31 �= 0 ; S12 = S23 = 0, (10)

whence ms = (r2/2) ν′ sin2 ϑ ϕ̇ S31. This leads to the
following set of equations of motion:

Ṡ31 +
(

1
r

− ν′ − λ′

2

)
ṙ S31 = 0, (11a)

d
dτ

[
(m + ms) ṫ

]
+ (m + ms) ν′ ṙ ṫ = 0, (11b)

d
dτ

[(m + ms) ϕ̇] + (m + ms)
2ṙϕ̇

r

+
(

ν′′

2
+

ν′2

4
− ν′λ′

4
+

λ′

2r

)
ṙ S31 = 0, (11c)

d
dτ

[(m + ms) ṙ]

+ (m + ms)
{

ṙ2λ′

2
− re−λ ϕ̇2 +

ν′ṫ2

2
e(ν−λ)

}

−re−λ

(
ν′ + λ′

2

)
ϕ̇ S31 = 0. (11d)

Equation (11b) at once gives the integral of energy

eν ṫ (m + ms) = E (const.), (12)

while (11a) stands as a first integral of spin only:

r S31 e(λ−ν)/2 = K (const.). (13)

Using (12) and (13) and noticing that

d2

dτ2 = ṫ2
d2

dt2
+ ẗ

d
dt

,

the variable τ can be eliminated from (11c) and (11d),
whence we obtain

d2r

dt2
+

(
λ′

2
− ν′

) (
dr

dt

)2

− re−λ

(
dϕ

dt

)2

(14a)

+
ν′

2
e(ν−λ) − K

E
e

3(ν−λ)
2

(ν′ + λ′)
2

dϕ

dt
= 0,

d2ϕ

dt2
+

(
2
r

− ν′
)

dr

dt

dϕ

dt
(14b)

+
K

E

(
ν′′

2
+

ν′2

4
− ν′λ′

4
+

λ′

2r

)
e

(3ν−λ)
2

1
r

dr

dt
= 0.

3 Spinning test particle trajectory
in static spherisymmetric
Einstein–Kalb–Ramond spacetime

Following the formalism in [6] the solutions for the metric
coefficients in a general static spherical symmetric space-
time involving the KR field have been obtained in [18,
9]:

eν(r)

= 1 − rS

r
+ b

[
rS

6r3 +
r2
S

6r4 +
3rS(r2

S − b/2)
20r5 + · · ·

]
,

e−λ(r) (15)

= 1 − rS

r
+ b

[
1
r2 +

rS

2r3 +
r2
S

3r4 +
rS(r2

S − b/6)
4r5 + · · ·

]
,

where rS = 2GM is the Schwarzschild radius and the
constant b is a measure of the strength of the KR field
(which has a natural interpretation in the form of a back-
ground torsion). The parameter b can be negative or posi-
tive depending the nature of the torsion–KR field coupling
constant within a minimal coupling prescription as has
been mentioned in [19]. Accordingly, torsion may exhibit
a repulsive (anti-gravitating) or an attractive character.
In the special case of vanishingly small gravitating mass
M = 0, i.e., rS = 0, the above solutions reduce to the
simple closed-form structures [18]

eν(r) = 1 ; e−λ(r) = 1 − b

r2 . (16)

Depending on positive or negative value of b, these rep-
resent a “wormhole” of throat radius

√|b| or a “naked
singularity” at r = 0.

We first study the dynamics of the spinning test parti-
cle in the special case rS = 0 and then follow this up with
a more rigorous investigation in the general case rS �= 0.

3.1 An otherwise empty spacetime
in presence of Kalb–Ramond field

In the case rS = 0, when the Einstein–KR spacetime is
otherwise empty, the equations of motion (14) for the spin-
ning test particle reduce to

d2r

dt2
+

λ′

2

(
dr

dt

)2

− re−λ

(
dϕ

dt

)2

−K

E

λ′

2
e−3λ/2 dϕ

dt
= 0, (17a)

d2ϕ

dt2
+

2
r

dr

dt

dϕ

dt
+

K

E

λ′

2 r2 e−λ/2 dr

dt
= 0. (17b)

Equation (17b) for ϕ yields the integral of angular mo-
mentum

r2 dϕ

dt
− K

E
e−λ/2 = Is (const.). (18)
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Fig. 1. a Variation of [ϕ(r) − ϕ∞] with U = r0/r for a characteristically chosen fixed value (= 0.2) of the parameter µ = b/r2
0

and a range of values of the parameter σ from −0.4 to 0.4. In order to achieve appreciable deviations the plots have been
exaggerated for higher values of U (close to unity). b Plots of the angle of bending ∆ϕ as a function of µ for parametric values
of σ ranging from −0.4 to 0.4

Equation (17a) for r then reduces to

dϕ

dU
=

eλ/2 + σ√
(1 + σ e−λ0/2)2 − U2 (1 + σ e−λ/2)2

, (19)

where we have used the dimensionless independent vari-
able U = r0/r , r0 being the distance of closest approach
of the spinning test particle towards the center of force;
λ0 ≡ λ(r0) and as such e−λ(U) = 1−µU2, where µ = b/r2

0
is the dimensionally scaled KR parameter. σ = K/(EIs)
is a dimensionless parameter that contains the integrals
of energy, spin and orbital angular momentum which de-
scribe the trajectory of the test particle.

As we are primarily interested in obtaining the equa-
tion of the trajectory of the spinning test particle at dis-
tances far away from the center of force (r � r0 , i.e.,
U � 1) where the KR field is sufficiently weak (|b| � r2

for all r ≥ r0), we make a large-distance approximation up
to order U2 and write the above equation in the integral
form as∫

dφ

≈ 1
1 + σ

∫
du√

δ2 − U2

{
1 + σ +

µU2

2
+ O (

µU2)2
}

;

U =
r0

r
� 1, (20)

where

δ =
1

1 + σ

[
1 + σ

{
1 − µ

2
+ O (

µ2)}]
;

|µ| =
|b|
r2
0

� 1. (21)

The solution of (20) is given by

ϕ − ϕ∞

= sin−1 U

δ
+

µ δ2

4 (1 + σ)

[
sin−1 U

δ
− U

δ

√
δ2 − U2

]
+ O(µU2)2, (22)

where ϕ∞ is the value of ϕ in the asymptotic limit r → ∞.
The second term on the right hand side of (22) gives a mea-
sure of the bending of the trajectory of the spinning test
particle (time-like or null) in the Einstein–KR spacetime.
This departure from the straight line motion which is a
characteristic in Minkowski spacetime (in absence of the
KR field) signals the exclusive effect of the antisymmetric
background on the geodesic and may be called as KR-
lensing. The spin of the particle described by the param-
eter σ does not contribute to the bending independently,
but is coupled with the KR parameter µ = b/r2

0 in an oth-
erwise empty spacetime. In fact, the presence of the KR
field makes the effect of the particle spin on the trajectory
deviation perceptible even when the gravitating mass is
zero. The change inflicted by the spin parameter σ on the
expression for (ϕ − ϕ∞) for a pure KR background (i.e.,
for σ = 0 – the result in [9]) is given to the leading order
in µσ as

σµ

4

[(
2 −

√
1 − U2

)
U − sin−1 U

]
.

Now, instead of performing an approximate integra-
tion of the equation of motion (19) for U � 1, one can
also solve (19) numerically, for characteristically chosen
numerical values of the parameters σ and µ. The amounts
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Fig. 2. a Variation of [ϕ(r) − ϕ∞] with U = r0/r for a characteristically chosen fixed value (= 0.2) of the parameter σ and a
range of values of the parameter µ from −0.4 to 0.4. In order to achieve appreciable deviations the plots have been exaggerated
for higher values of U (close to unity). b Plots of the angle of bending ∆ϕ as a function of σ for parametric values of σ ranging
from −0.4 to 0.4. For µ = 0, however, ∆ϕ = 0

of trajectory deviation of the spinning test particles in
such a numerical evaluation are depicted in Figs. 1a and
2a, while the variations of the angle of bending, viz., ∆ϕ =
2|ϕ−ϕ∞|− π as a function of µ (for fixed σ) or as a func-
tion of σ (for fixed µ) are shown respectively in Figs. 1b
and 2b.

While the above results are achieved in an idealized
situation where a vanishingly small gravitating mass M
(and hence rS) is considered, in the following section we
investigate the motion of spinning test particles in the
more realistic scenario of a general static spherical space-
time background in presence of the KR field, i.e with both
b and rS �= 0.

3.2 A general static spherically symmetric spacetime
in presence of Kalb–Ramond field

In the general static spherically symmetric spacetime
(rS �= 0) with the metric in the form (5), we have the
differential equations (14a) and (14b) for r and ϕ. Equa-
tion (14b) yields the general integral of angular momen-
tum given by

r2 e−ν dϕ

dt
− K

E
e(ν−λ)/2

(
1 − rν′

2

)
= Ig (const.). (23)

Considering the particle’s spin to be small we obtain the
equation of the orbit in an power series expansion of the
redefined dimensionless spin parameter σ = K/(EIg) as

(
dr

dϕ

)2

= r4 e−λ

×
[

1
r2
0

− 1
r2 +

1
I2
g

(
e−ν − e−ν0

)
+ 2σ

(
1
r2
0

e(ν0−λ0)/2 − 1
r2 e(ν−λ)/2

)
+ O (

σ2)]
/[

1 + σ

(
1 − rν′

2

)
e(ν−λ)/2

]2

. (24)

Due to the extreme complexity of this equation in the gen-
eral static spherisymmetric Einstein–KR spacetime with
solutions for eν and e−λ as given in (15), we focus on the
rather simplified scenario, that of the dynamics of null
(massless) spinning particles in such a spacetime.

Now, resorting to the limit σ → 0, we have Ig → I0 =
r2e−νϕ̇ and the above equation (24) can be recast [20,21]
in the form(

dr

dϕ

)2

= r2 e−λ(r)
(

r2

D2 e−ν(r) − 1
)

, (25)

where D = I0 is the impact parameter for the null parti-
cles. The solution is given in the form of a quadrature [20,
21],

ϕ(r) − ϕ∞ =
∫ ∞

r

dr′

r′ eλ(r′)/2
(

r′2

D2 e−ν(r′) − 1
)−1/2

.

(26)
At the distance of closest approach (r0) to the center of
force, dr/dϕ|r=r0 = 0, whence (25) gives

D = I0 = r0 e−ν0/2, (27)

where ν0 ≡ ν(r0).



458 D. Maity et al.: Spinning test particle in Kalb–Ramond background

0 0.2 0.4 0.6 0.8 1

U −− −>

0

0.5

1

1.5

2

ϕ
−

ϕ
∞

−
−

−
>

α = 0.2, µ = 0.2 fixed

σ = −0.2
σ = 0.2

σ = 0

0 0.05 0.1 0.15 0.2

α −− −>

0.2

0.4

0.6

0.8

l
∆

ϕ
l

−
−

−
>

µ = 0.2 fixed

σ = −0.2
σ = 0.2

σ = 0

a b
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0 0.2 0.4 0.6 0.8 1

U −− −>

0

0.5

1

1.5

2

ϕ
−

ϕ
∞

−
−

−
>

α = 0.2, σ = 0.2 fixed

µ = −0.2
µ = 0.2

µ = 0

-0.2 -0.1 0 0.1 0.2

σ −− −>

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l
∆

ϕ
l

−
−

−
>

α = 0.2 fixed

µ = −0.2
µ = 0.2

µ = 0

a b

Fig. 4. a Variation of [ϕ(r) − ϕ∞] with U = r0/r for characteristically chosen fixed values of the parameters α(= 0.2) and
σ(= 0.2) and three values (= 0, 0.2 and −0.2) of the parameter µ. b Plots of the magnitude of angle of bending ∆ϕ as a function
of σ for a fixed value of α(= 0.2) and the three parametric values (= 0, 0.2 and −0.2) of µ

For non-vanishing σ, (23) for the integral of angular
momentum can be rewritten as

Ig =
I0

1 + σ
(
1 − rν′

2

)
e(ν−λ)/2

; I0 = r2 e−ν ϕ̇. (28)

Using (27) and (28) and changing the independent vari-
able to U ≡ r0/r, we finally write the equation for the

orbit as

dϕ

dU
= ±eλ/2F (U) (29)/(

1 − U2 +
(
eν0−ν − 1

)
F 2(U)

+ 2σG(U) + O (
σ2))1/2

,
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of µ for a fixed value of σ(= 0.2) and the three parametric values (= 0, 0.1 and 0.2) of α

where

F (U) = 1 + σ

(
1 +

U

2
dν

dU

)
e(ν−λ)/2 ;

G(U) = e(ν0−λ0)/2 − U2e(ν−λ)/2. (30)

It is easy to check that for rS = 0, up to order σ2, (29)
reduces exactly to (19), the approximate analytic solu-
tion of which is given in (22). For rS �= 0, however, in
absence of such analytic solution, we resort to numerical
techniques to solve (29) up to order σ2. Now, in a gen-
eral static spherisymmetric Einstein–KR spacetime, one’s
prime interest is in the determination of effects of the
particle’s spin as well as those of the KR field on stan-
dard astrophysical phenomena. For this purpose, we need
to study the trajectory deviation of spinning particles in
the gravitational field of non-compact objects whose mean
radii are much larger than the Schwarzschild radius rS. In
other words, the region r � rS is of particular relevance
in the context of KR and particle-spin effects. Inciden-
tally, both the metric coefficients eν and e−λ given in (15)
are convergent for r � rS, provided the torsion (or, the
KR field strength) is small, i.e., |b|/r2 � 1, in that do-
main. Since there is no experimental signature directly
in favour of torsion till now, it is reasonable to consider
torsion to be weak, at least in the region r ≥ r0, with
r0 (the distance of closest approach towards the center
of force) much larger than the Schwarzschild radius. As
such, we consider the magnitude of the dimensionless KR
measure µ = b/r2

0 to be much smaller than unity. Drop-
ping terms of order quadratic or more in rS/r and b/r2

we can approximately write the solutions (15) in terms of
the dimensionally scaled radial coordinate U and the KR

parameter µ as

eν(U) = 1 − αU ; e−λ(U) = 1 − αU − µU2, (31)

where α = rS/r0. For these solutions of the metric co-
efficients, we obtain the numerical solutions of (29) for
various sets of values of the dimensionless parameters α, µ
and σ. The corresponding bending angle of trajectories
(∆ϕ = 2|ϕ − ϕ∞| − π) have been computed in various
situations. The plots of (ϕ − ϕ∞) as a function of U as
well as those of ∆ϕ as a function of α or σ or µ have been
shown in Figs. 3–5.

Now to estimate the KR (or torsion) measure µ (and
also the spin parameter σ) we follow the standard solar
system analysis as in [9]. For the bending of light near the
sun, the impact parameter r0 is roughly of the order of
the solar radius Rs and the parameter α is estimated to
be

α =
rS

r0
=

2GMs

c2Rs
(32)

where Ms is the solar mass. Plugging in the standard val-
ues for Ms and Rs [21,22] we find α to be extremely small
(∼ 5 × 10−6). The spin parameter σ = K/(EIg) can be
estimated as follows: the value of the spin angular momen-
tum K for photons is � and the energy E = hc/λ, where
h is the Planck’s constant, � = h/(2π) and c is the speed
of light. Therefore, K/E = λ/(2πc) which is numerically
∼ 10−15 for visible radiation with λ ∼ 5000 Å. From (28),
the constant Ig can be given in terms of the parameters
r0, α and µ as

Ig =
r0√
1 − α

− K

E

(
1 − 3α

2

) √
1 − µ

1 − α
. (33)
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With the small estimates of α and K/E shown above, one
can approximately write Ig = r0 ∼ Rs, which essentially
implies an extremely small value of the dimensionless spin
parameter σ (∼ 10−23). Neglecting the small estimates for
α and σ, and integrating (29) and (30), we finally compute
the leading contribution of the KR field to the amount of
bending of light trajectories as

∆ϕ|KR =
πµ

4
. (34)

Using the error bars for the standard deflection of light
measurements for the sun [22] the parameter µ = b/r2

0 ≈
b/R2

s turns out to be approximately of the order of 10−6.

4 Conclusion

We have clearly demonstrated the influence of a string in-
spired KR background on the geodesics of spinning test
particles. We have shown how the geodesic is modified by
various factors, namely the KR field strength, the spin of
the particle and the gravitating mass. The dependence of
the geodesics on these factors have been exhibited graph-
ically. We hope that an accurate determination of the
geodesic deviation of various cosmic particles in astrophys-
ical experiments would be able to pinpoint the presence or
absence of antisymmetric tensor field in the background
spacetime leading to a much better understanding of the
background spacetime geometry. In addition, any evidence
of the presence of such a massless antisymmetric tensor
field in the background may be looked upon as indirect
evidence of a string inspired low energy world.
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